IMMUNOLOGY

GPER1 is required to protect fetal health from maternal inflammation

Alfred T. Harding1, Marisa A. Goff2, Heather M. Froggatt1, Jean K. Lim2, Nicholas S. Heaton1,3

Type I interferon (IFN) signaling in fetal tissues causes developmental abnormalities and fetal demise. Although pathogens that infect fetal tissues can induce birth defects through the local production of type I IFN, it remains unknown why systemic IFN generated during maternal infections only rarely causes fetal developmental defects. Here, we report that activation of the guanine nucleotide–coupled estrogen receptor 1 (GPER1) during pregnancy is both necessary and sufficient to suppress IFN signaling and does so disproportionately in reproductive and fetal tissues. Inactivation of GPER1 in mice halted fetal development and promoted fetal demise, but only in the context of maternal inflammation. Thus, GPER1 is a central regulator of IFN signaling during pregnancy that allows dynamic antiviral responses in maternal tissues while also preserving fetal health.

When pathogenic infections occur during pregnancy, the maternal immune system must respond and suppress pathogen replication without targeting the genetically heterologous fetus (1, 2). In some cases, however, including during utero infections, consequential fetal inflammation cannot be avoided, leading to birth defects and fetal demise (3–5). In particular, fetal type I interferon (IFN) signaling can be a major driver of developmental abnormalities (4, 5). Many infections that are common during pregnancy, such as influenza A virus (IAV), induce systemic type I IFN and could cause fetal IFN signaling without local viral replication (6, 7). Yet maternal IAV infections are rarely linked to birth defects (8, 9). Thus, a mechanism may exist that allows IFN signaling in infected tissues while preventing maternal type I IFN from initiating signaling in the fetus.

To identify IFN regulators that could mediate differential IFN control across tissues, we performed genome-wide CRISPR-Cas9 screens in a human epithelial cell line with an IFN response reporter (fig. S1). After IFN treatment of the reporter cells and removal of the cytokine, we collected cells that aberrantly maintained fluorescence to identify the proteins required to down-regulate IFN signaling (Fig. 1A). Through bioinformatic analysis, we identified a number of genes that were enriched above the nontargeting sgRNA controls, including, as expected, proteasomal subunits that directly prevent green fluorescent protein degradation (Fig. 1B and table S1).

We used screen-enriched single-guide RNAs (sgRNAs) to target nine genes selected from among our top hits and saw that the targeting of six genes significantly prolonged IFN signaling (table S2). One of the validated screen hits, guanine nucleotide–coupling estrogen receptor 1 (GPER1, also known as GPR30), is a nonclassical estrogen receptor (10) that was likely activated by fetal calf serum–derived estrogen during our screen. Because estrogen concentrations increase greatly during pregnancy (11, 12), GPER1 had the potential to link pregnancy hormone levels to regulation of the IFN response. Because our initial GPER1 validation was performed with a polyclonal population, we next verified our IFN reporter results with a clonal line (Fig. 1, C and D). We then made use of a GPER1–specific inhibitor, G15, which competitively blocks estrogen binding (13). In a dose-dependent manner, treatment with the inhibitor prevented appropriate down-regulation of the IFN response reporter (Fig. 1, E and F) as well as endogenous IFN-stimulated gene (ISG) mRNA transcripts (Fig. 1G). As expected, in our clonal GPER1 sgRNA line, G15 treatment did not significantly alter IFN signaling (Fig. 1H).

To determine whether GPER1 activity is sufficient to suppress IFN signaling, we overexpressed GPER1 (Fig. 2A). Without major alterations to cell viability (Fig. 2B and fig. S2), the IFN response was suppressed as measured by the IFN reporter as well as endogenous ISG RNA and protein levels (Fig. 2, C to H). We also used the GPER1 agonist G1, which specifically activates GPER1 (14). At a concentration that did not induce apparent cellular toxicity, G1 significantly reduced IFN signaling across a range of IFN treatment concentrations (Fig. 2, I and J). Finally, we tested individual estrogens to elucidate which natural GPER1 ligands can suppress IFN signaling. Consistent with previous reports describing GPER1 activation (15), estradiol (E2) and, to a much smaller extent, estrone (E1) could suppress the IFN response reporter, whereas estriol (E3) could not (Fig. 2K).

To determine which tissues might have biologically relevant GPER1 activity, we performed GPER1 protein immunoblots on tissues from pregnant mice. Consistent with the reports of GPER1 distribution in humans (16), expression was highest in the reproductive and fetal tissues, including the placenta (Fig. 3A). Because type I IFN signaling in the placenta has been implicated as a key determinant of fetal fate, we performed immunohistochemical analysis for the localization of GPER1 in the placenta. Although GPER1 was expressed in all of the major placental zones, we observed high expression in the cells that line the vascular labyrinth (Fig. 3B). Despite differences in blood supply architecture, GPER1 was also highly expressed in the cells that contact the maternal blood supply in human placental samples (fig. S3).

Elevated estrogen concentrations during pregnancy, combined with differential GPER1 expression across the maternal periphery and fetal tissues, suggested that GPER1 may mediate tissue-specific regulation of IFN signaling during pregnancy. We therefore used a murine pregnancy model of IAV infection, administering either the GPER1 inhibitor G15 or a vehicle control (Fig. 3C). Presumably because of relatively lower GPER1 expression in the respiratory tract, drug treatment had no major effects on maternal morbidity, the infectious viral titer, the lung transcriptional response, or the pulmonary inflammatory cytokine signature (Fig. 3, D to F, and figs. S4 and S5). Influenza disease in nonpregnant mice, at least in the C57BL/6 background, was similarly unaffected by G15 treatment (fig. S6).

By contrast, the placental response to maternal IAV infection (fig. S7) was significantly altered by G15 inhibition of GPER1 (Fig. 3G). These transcriptional changes were not attributable to G15 treatment allowing for viral dissemination from the respiratory tract (Fig. 3H). Instead, the inhibition of GPER1 during maternal infection led to the up-regulation of many, but not all, canonical ISGs and IFN-induced cytokines (17) such as CCL3 and CCL5, but not IL6 itself (Fig. 3I and fig. S8). Our inability to detect the up-regulation of all ISGs was likely due to constitutive type III IFN responses in some regions of the placenta (18). Additionally, IFN treatment of primary human placentals explants with and without G15 also led to increased ISG expression (fig. S9). Many non-IFN–regulated genes were also affected during G15 treatment and infection. Gene ontology of the suppressed genes revealed the enrichment of pathways involved in blood vessel development and angiogenesis (figs. S10 and S11), consistent with the reports of type I IFN signaling suppressing angiogenesis (19). As expected from the transcriptional data, we also observed an obvious attenuation or degradation of the placental endothelium when G15 was...
administered during IAV infection (Fig. 3, J and K, and fig. S12).

Next, we asked whether neonatal viability would be affected by these placental changes (Fig. 4A). Although again, there was no observable difference in maternal disease (Fig. 4, B and C), pup birth weight was modestly reduced by either viral infection or G15 treatment alone (Fig. 4D), which is consistent with a role for GPER1 in normal uterine function (20) and the effects of maternal influenza on fetal birth weight (22). However, the most severe reduction in birth weight was observed when G15 treatment occurred in the presence of IAV infection (Fig. 4D). Furthermore,
although the number of pups in each litter was similar across treatment groups, only those pups born to IAV-infected, G15-treated dams were predominantly stillborn (Fig. 4, E to G). Analogous experiments using Gper1−/− mice revealed similar viability phenotypes (fig. S13).

Making use of immunocompetent Zika virus (21) and influenza B virus mouse pregnancy models, we again observed that G15 treatment exacerbated virus-induced fetal developmental defects (figs. S14 and S15). As a nonviral approach to induce systemic inflammation, we also treated pregnant mice with the viral RNA mimic polyinosinic:polycytidylic acid poly(I:C). Although this treatment by itself negatively affected fetal development, we could exacerbate the effects with G15 and, conversely, promote neonatal viability with the GPER1 agonist G1 (fig. S16). Finally, to experimentally link GPER1 activity to control of IFN signaling, we treated pregnant mice with poly(I:C) in the presence of either control or IFN-alpha and beta receptor (IFNAR)–blocking antibodies (Fig. 4H). Administration of the IFNAR-blocking antibody mostly suppressed the negative effects of poly(I:C) and G15 on fetal development (Fig. 4, I and J). Thus, GPER1 activity is largely dispensable even when maternal inflammation is present, provided that type I IFN signaling has been blocked.

We propose a model whereby GPER1 is a central regulator of type I IFN signaling during pregnancy that protects fetal health without compromising peripheral maternal IFN responses. The effects of systemic or “non-local” type I IFN have not generally been

Fig. 2. GPER1 activity is sufficient to suppress the type I IFN response. (A) Protein immunoblots of GPER1 and tubulin in control or GPER1-overexpressing 293T cells. (B) Viability of 293T cells 18 hours after transfection with either a control or GPER1 expression plasmid, n = 3. (C) Percentage of 293T cells positive for the ISRE reporter after expression of the indicated protein, n = 3. (D) Quantification of the mean fluorescence intensity from (C). (E to G) qRT-PCR analysis of the indicated ISGs after IFN-α2 treatment of 293T cells expressing GPER1 or a control protein, n = 3. (H) Protein immunoblots of IFIT1 and tubulin after IFN-α2 treatment in 293T cells. (I) Percentage of reporter-positive ISRE-A549 cells after IFN-α2 and vehicle or G1 treatment, n = 3. (J) Cellular viability from (I), n = 3. (K) Percent of reporter-positive ISRE-A549 cells after treatment with IFN-α2 and the indicated concentrations of estradiol, estriol, or estrone, n = 3. All data are representative of at least two independent experiments. For all panels, error bars indicate SEM, and statistical analyses were performed by means of unpaired Student’s t tests. *P ≤ 0.05; **P ≤ 0.001; ns, not significant.
appreciated as an important mediator of fetal disease. Our data argue that without GPER1-mediated suppression of IFN signaling, many maternal infections would have notable consequences for fetal health. Recent studies have highlighted the deleterious consequences for placental vasculature and syncytiotrophoblast formation after fetal type I IFN signaling (4, 5).

Nevertheless, a number of important questions remain unresolved. First, the mechanism by which GPER1 prevents IFN signaling remains unknown. GPER1 activation has been reported to alter cyclic adenosine monophosphate levels, mediate extracellular signal-regulated kinase (ERK) 1/2 activation through epidermal growth factor receptor (EGFR) signaling, and activate the phosphatidylinositol 3-kinase (PI3K)-Akt pathways (22). At least in our in vitro system, treatment with the well-characterized EGFR and PI3K inhibitors erlotinib and LY294002 failed to reverse the G1-mediated

Our findings expand upon those results by identifying a regulatory mechanism for fetal IFN signaling. Nevertheless, a number of important questions remain unresolved. First, the mechanism by which GPER1 prevents IFN signaling remains unknown. GPER1 activation has been reported to alter cyclic adenosine monophosphate levels, mediate extracellular signal-regulated kinase (ERK) 1/2 activation through epidermal growth factor receptor (EGFR) signaling, and activate the phosphatidylinositol 3-kinase (PI3K)-Akt pathways (22). At least in our in vitro system, treatment with the well-characterized EGFR and PI3K inhibitors erlotinib and LY294002 failed to reverse the G1-mediated
suppression of IFN signaling, potentially implicating other pathways downstream of GPER1 (fig. S17). Also, alterations in GPER1 activity may induce changes in classical estrogen receptor signaling, which could then ultimately influence IFN regulation. Additionally, it will be important to understand why the GPER1-mediated suppression of IFN signaling is insufficient to protect from damage during infection with pathogens that replicate in fetal tissues (23). Future studies will be required to definitively answer this question, but we...
hypothesize that GPER1 activity can be over-
whelmed by relatively high concentrations of
IFN at the sites of active pathogen replication.

Finally, on the basis of our experiments with
Gi, one might speculate that the therapeutic
activation of GPER1 signaling could be used
to protect fetal health. Although activation of
the classical estrogen receptors can influ-
ence adult influenza disease (24), GPER1 can
be targeted independently of the other estro-
gen receptors (13, 14). Thus, without compro-
mising maternal immunity, the induction of
GPER1 activity may be able to prevent a range
of developmental conditions linked to mater-
nal infection and/or fetal inflammation (25),
independent of their underlying etiologies, by
targeting the commonality of inappropriate
type I IFN signaling.

REFERENCES AND NOTES
1. K. Racicot, J. Y. Kwon, P. Aldo, M. Silasi, G. Mor,
2. G. Mor, I. Cardenas, V. Abrahams, S. Guller, Annu. N. Y. Acad.
(2016).
(2011).
10. C. M. Revankar, D. F. Cimino, L. A. Sitar, J. B. Arterburn,
11. R. De Hertogh, K. Thomas, J. J. Hoet, I. Vanderheyden,
12. M. A. Pazos, T. A. Kraus, C. Munoz-Fontela, T. M. Moran,
15. P. Thomas, Y. Pang, E. J. Filardo, J. Dong, Endocrinology 146,
18. A. Bayer et al., Cell Host Microbe 19, 705–712 (2016).

ACKNOWLEDGMENTS
We thank B. Heaton and B. Cullen for reagents and helpful
discussion. We also thank B. Hughes, K. Weaver, B. Antczak, and
the staff of the Carolina Cord Blood Bank. Additionally, we
acknowledge support from the Duke Pathology Core, the Duke Cancer
Institute Flow Cytometry Core, the Duke Light Microscopy Core
Facility, and the Duke Sequencing and Genomic Technologies
Core. Funding: A.T.H. was supported by an NIH training grant
(T32-AI07654). J.K.L. is partially supported by the National Institute
of Allergy and Infectious Disease (R21AI109593, R21AI148444, and
RO1AI08337). N.S.H. is partially supported by the National Institute
of Allergy and Infectious Disease (RO1AI170331), the National Heart Lung
and Blood Institute (RO1HL142985), and an Individual Biomedical
Research Award from The Hartwell Foundation. Author contributions:
A.T.H., N.S.H., and J.K.L. designed experiments; A.T.H., M.A.G., H.M.F.,
and J.K.L. performed experiments and collected data; N.S.H., A.T.H.,
and J.K.L. analyzed data; and A.T.H. and N.S.H. wrote the manuscript.

Competing interests: The authors declare no competing interests.

Data and materials availability: Raw sequencing files and mapped
read counts are available at NCBI GEO under accession number
GSE143432. The plasmids for encoding the fluorescent IFN response
reporter and those for expression of GPER1, as well as the PR8 strain of
the IAV, are available from the corresponding author under a Material
Transfer Agreement with Duke University. All other data are available in
the manuscript or the supplementary materials.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/371/6526/271/suppl/DC1

Materials and Methods
Figs. S1 to S17
Tables S1 and S2
References (20–22)
MDAR Reproducibility Checklist
Data S1

View/request a protocol for this paper from Bio-protocol.

14 January 2020; resubmitted 23 July 2020
Accepted 4 December 2020
10.1126/science.abu9001
GPER1 is required to protect fetal health from maternal inflammation
Alfred T. Harding, Marisa A. Goff, Heather M. Froggatt, Jean K. Lim and Nicholas S. Heaton

Science 371 (6526), 271-276.
DOI: 10.1126/science.aba9001

GPER1 in utero to the rescue!
Several common pathogens, including influenza A virus (IAV), can activate systemic type I interferon (IFN) signaling during pregnancy. Such infections would be expected to cause birth defects and fetal mortality, but maternal IAV infections rarely produce such effects, suggesting the presence of a protective mechanism in fetal tissues. Harding et al. used a CRISPR screen to uncover IFN regulators that can mediate differential IFN control across tissues in human cell lines. They found that G protein–coupled estrogen receptor 1 (GPER1), which is expressed in fetal tissues, acts as a protective suppressor of IFN responses in the placenta during maternal infection. In a mouse model, pharmacological activation of GPER1 shielded fetuses from maternal inflammation. Activation of GPER1 might be promising therapeutically to protect the fetus from both maternal and fetal infections.

Science, this issue p. 271

ARTICLE TOOLS http://science.sciencemag.org/content/371/6526/271
SUPPLEMENTARY MATERIALS http://science.sciencemag.org/content/suppl/2021/01/13/371.6526.271.DC1
RELATED CONTENT http://stm.sciencemag.org/content/scitransmed/12/550/eaaz0131.full
http://stm.sciencemag.org/content/scitransmed/12/537/eaax1798.full
http://stm.sciencemag.org/content/scitransmed/12/527/eaay1059.full
http://stm.sciencemag.org/content/scitransmed/12/524/eaax6629.full
REFERENCES This article cites 31 articles, 8 of which you can access for free
http://science.sciencemag.org/content/371/6526/271#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works