Stanislav Kozmin

Petes Lab 

Research Scholar
375 CARL Building
Box 3054
Durham, NC 27710
919-684-5814
stanislav.kozmin@duke.edu

 

Research Interests:
Mechanisms of Mutation

Publications:

S.G. Kozmin, I.B. Rogozin, E.A. Moore, M. Abbney, R.M. Schaaper, and Y.I. Pavlov. 2019. 6-N-hydroxylaminopurine nucleotide is responsible for the toxic and mutagenic effects of the antineoplastic Staphylococcus epidermidis MO34. Science Advances, in press.

 

Vijayraghavan, S.G. Kozmin, P.K. Strope, D.A. Skelly, Z. Lin, J. Kennel, P.M. Magwene, F.S. Dietrich, and J.H. McCusker. 2018. Mitochondrial genome variation affects multiple respiration and non-respiration phenotypes in Saccharomyces cerevisiae. Genetics doi: 10.1534/genetics.118.301546.

 

P.K. Strope, D.A. Skelly, S.G. Kozmin, G. Mahadevan, E.A. Stone, P.M. Magwene, F.S. Dietrich, and J.H.  McCusker. 2015. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Research 25(5): 762-774.

 

P.K. Strope, S.G. Kozmin, D.A. Skelly, P.M. Magwene, F.S. Dietrich, and J.H. McCusker. 2015. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae. FEMS Yeast Research doi: 10.1093/femsyr/fov090.

 

Zhao, P.K. Strope, S.G. Kozmin, J.H. McCusker, F.S. Dietrich, R.J. Kokoska, and T.D. Petes. 2014. Structures of naturally-evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal non-homologous recombination. G3 4(11): 2259-2269.

 

S.G. Kozmin, E.I. Stepchenkova, S.C. Chow, and R.M. Schaaper. 2013. A critical role for the putative NCS2 nucleobase permease YjcD in the sensitivity of Escherichia coli to cytotoxic and mutagenic purine analogs. MBio 4(6) doi: 10.1128/mBio.00661-13.

 

S.G. Kozmin, E.I. Stepchenkova, and R.M. Schaaper. 2013. TusA(YhhP) and IscS are required for molybdenum-cofactor-dependent base-analog detoxification. MicrobiologyOpen 2(5): 743–755.  S.G. Kozmin and R.M. Schaaper. 2013. Genetic characterization of moaB mutants of Escherichia coli. Research in Microbiology 164(7): 689–694.

 

S.G. Kozmin and S. Jinks-Robertson. 2013. The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells. Genetics 193(3): 803–817.

 

A.G. Lada, C. Frahm Krick, S.G. Kozmin, V.I. Mayorov, T.S. Karpova, I.B. Rogozin, and Y.I. Pavlov.  2011. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Moscow) 76(1): 131–146.

 

S.G. Kozmin, J. Wang, and R.M. Schaaper. 2010. A role of CysJ flavin reductase in molybdenum cofactor-dependent resistance of Escherichia coli to 6-N-hydroxylaminopurine. Journal of Bacteriology 192(8): 2026–2033.

 

E.I. Stepchenkova, S.G. Kozmin, V.V. Alenin, and Y.I. Pavlov. 2009. Genetic control of metabolism of mutagenic purine base analogs 6-hydroxylaminopurine and 2-amino-6-hydroxylaminopurine in yeast Saccharomyces cerevisiaeRussian Journal of Genetics 45(4): 409–414.

 

S.G. Kozmin, Y. Sedletska, A. Reynaud-Angelin, D. Gasparutto, and E. Sage. 2009. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells. Nucleic Acids Research 37(6): 1767–1777.

 

S.G. Kozmin, P. Leroy, Y.I. Pavlov, and R.M. Schaaper. 2008. YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Molecular Microbiology 68(1): 51–65.

 

S.G. Kozmin and R.M. Schaaper. 2007. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function. Mutation Research 619(1–2): 9–15.

 

Porta, C. Kolar, S.G. Kozmin, Y.I. Pavlov, and G.E. Borgstahl. 2006. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase. Acta Crystallographica Section F – Structural Biology and Crystallization Communications 62(Pt 11): 1076–1081.

 

E.I. Stepchenkova, S.G. Kozmin, V.V. Alenin, and Y.I. Pavlov. 2005. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast. BMC Genetics 6(1): 31, doi:10.1186/1471–2156–6–31.

Kozmin, G. Slezak, A. Reynaud-Angelin, C. Elie, Y. de Rycke, S. Boiteux, and E. Sage. 2005. UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences USA 102(38): 13538–13543.

 

S.G. Kozmin, Y.I. Pavlov, T.A. Kunkel, and E. Sage. 2003. Roles of Saccharomyces cerevisiae DNA polymerases Polh and Polz in response to irradiation by simulated sunlight. Nucleic Acids Research 31(15): 4541–4552.

 

S.G. Kozmin, Y.I. Pavlov, R.L. Dunn, and R.M. Schaaper. 2000. Hypersensitivity of Escherichia coli D(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis. Journal of Bacteriology 182(12): 3361–3367.

 

S.G. Kozmin, P. Leroy, and Y.I. Pavlov. 1998. Overexpression of the yeast HAM1 gene prevents 6-N-hydroxylaminopurine mutagenesis in Escherichia coli. Acta Biochimica Polonica 45(3): 645–652.

 

S.G. Kozmin, R.M. Schaaper, P.V. Shcherbakova, V.N. Kulikov, V.N. Noskov, M.L. Guetsova, V.V. Alenin, I.B. Rogozin, K.S. Makarova, and Y.I. Pavlov. 1998. Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutation Research 402(1–2): 41–50.

 

S.G. Kozmin, V.D. Domkin, A.M. Zekhnov, and Y.I. Pavlov. 1997. Genetic control of metabolism of the mutagenic base analog 6-N-hydroxylaminopurine in yeast Saccharomyces cerevisiae. Russian Journal of Genetics 33(5): 487–493.

 

V.N. Noskov, K. Staak, P.V. Shcherbakova, S.G. Kozmin, K. Negishi, B.C. Ono, H. Hayatsu, and Y.I. Pavlov. 1996. HAM1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast 12(1): 17–29.